Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
This work investigates decision level fusion by ex- tending the framework of subjective logic to account for hidden observations. Bayes rule might suggest that decision level fusion is simply calculated as the normalized product of the class likelihoods of the various classifiers. However, this product rule suffers from a veto issue. The problem with the classical Bayes formulation is that it does not account for uncertainties inherent in the likelihoods exclaimed by the classifiers. This paper uses subjective logic as a rigorous framework to incorporate uncertainty. First, a class appearance model is introduced that roughly accounts for the disparity between training and testing conditions. Then, the subjective logic framework is expanded to account for the fact that class appearances are not directly observed. Rather, a classifier only returns the likelihood for the class appearance. Finally, the paper uses simulations to com- pare the new subjective logic framework to traditional classifier fusion methods in terms of classification performance and the ability to estimate the parameters of the class appearance model.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back