Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Large-scale coordination and control problems in sensor/actuator networks are often expressed within the networked optimization model. While significant advances have taken place in both first- and higher-order optimization techniques, their widespread adoption in practical implementations has been hindered by a lack of adequate programming and evaluation support. This motivates the two major contributions of this paper. First, we outline the design of an Application Programming Framework, implement different versions of the subgradient technique and perform extensive evaluation with varying deployment and algorithmic parameters. Second, the insights obtained by observing the variability in practical metrics such as response time and incurred message cost, lead us to exploit the spatial locality inherent in these large-scale actuator control applications, and propose a novel consensus algorithm applied to the subgradient method. We show using simulations that there is at least 99% improvement in response time and the message cost is reduced by more than 90% over prior consensus based algorithms.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back