Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
The system lifetime gains provided by the various power management techniques in embedded sensing systems are a strong function of the active and sleep mode power consumption of the underlying hardware platform. However, power consumption characteristics of hardware platforms exhibit high variability across different instances of the platform, diverse ambient conditions, and over passage of time. The factors underlying this variability include increased manufacturing variations and aging effects due to shrinking transistor geometries, and deployment of embedded devices in extreme environments. Our experimental measurements show that large variability in sleep mode power is already present in commonly used embedded processors, and technology trends suggest that the variability will grow even more over time and affect active mode power as well. Such variability results in suboptimal lifetime and service quality. We therefore argue for energy management approaches that learn and model the power characteristics of the specific instance of the hardware platform, and adapt accordingly.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back