Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Data loss in wireless sensing applications is inevitable and while there have been many attempts at coping with this issue, recent developments in the area of Compressive Sensing (CS) provide a new and attractive perspective. Since many physical signals of interest are known to be sparse or compressible, employing CS, not only compresses the data and reduces effective transmission rate, but also improves the robustness of the system to channel erasures. This is possible because reconstruction algorithms for compressively sampled signals are not hampered by the stochastic nature of wireless link disturbances, which has traditionally plagued attempts at proactively handling the effects of these errors. In this paper, we propose that if CS is employed for source compression, then CS can further be exploited as an application layer erasure coding strategy for recovering missing data. We show that CS erasure encoding (CSEC) with random sampling is robust for handling missing data in erasure channels, paralleling the performance of BCH codes, with the added benefit of graceful degradation of the reconstruction error even when the amount of missing data far exceeds the designed redundancy. Further, since CSEC is equivalent to nominal oversampling in the incoherent measurement basis, it is computationally cheaper than conventional erasure coding. We support our proposal through extensive performance studies.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back