Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Data loss in wireless sensor systems is inevitable, either due to exogenous (such as transmission medium impediments) or endogenous (such as faulty sensors) causes. While there have been many attempts at coping with this issue, recent developments in the area of Compressive Sensing (CS) enable a new perspective. Since many natural signals are compressible, it is possible to employ CS, not only to reduce the effective sampling rate, but to improve the robustness of the system at a given Quality of Information (QoI). This is possible because reconstruction algorithms for compressively sampled signals are not hampered by the stochastic nature of wireless link disturbances and sensor malfunctions, which has traditionally plagued attempts at proactively handling the effects of these errors. In this paper, we show how reconstruction error remains unchanged despite extreme data losses by marginally increasing the average sampling rate. A challenge with this approach is that link errors and sensor faults exhibit bursty exponentially distributed losses, while CS strategies assume independent uniformly distributed random sampling instants. We show that a simple re-ordering of samples prior to communication re-enables successful reconstruction with high probability.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back