Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Time synchronization in embedded sensor networks is an important service for correlating data between nodes and communication scheduling. While many different approaches to the problem are possible, one major effect of clock frequency difference between nodes, environmental temperature changes, has often been left out of the solution. The common assumption that the temperature is static over a certain period of time is often used as an excuse to assume constant frequency errors in a clock. This assumption forces synchronization protocols to resynchronize too often. While there exists hardware solutions to this problem, their prohibitive high cost and power consumption make them unsuitable for some applications, such as wireless sensor networks.<br> Temperature Compensated Time Synchronization (TCTS) exploits the on-board temperature sensor existing in many sensor network platforms. It uses this temperature sensor to autonomously calibrate the local oscillator and removes effects of environmental temperature changes. This allows a time synchronization protocol to increase its resynchronization period, without loosing synchronization accuracy, and thus saves energy and communication overhead. In addition, TCTS provides a stable clock source when radio communication is impaired. We present the theory behind TCTS, and provide initial results of a simulated comparison of TCTS and the Flooding Time Synchronization Protocol. <p /> The code for TCTS can be found here:<br /> <a href="https://projects.nesl.ucla.edu/view/gitweb.cgi?p=thomas/tinyos-2.x-tcts;a=summary">https://projects.nesl.ucla.edu/view/gitweb.cgi?p=thomas/tinyos-2.x-tcts;a=summary</a>
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back