Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Many embedded systems contain resource constrained microcontrollers where applications, operating system components and device drivers reside within a single address space with no form of memory protection. Programming errors in one application can easily corrupt the state of the operating system and other applications on the microcontroller. In this paper we propose a system that provides memory protection in tiny embedded processors.1. Our system consists of a software run-time working with minimal low-cost architectural extensions to the processor core that prevents corruption of state by buggy applications. We restrict memory accesses and control flow of applications to protection domains within the address space. The software run-time consists of a Memory map: a flexible and efficient data structure that records ownership and layout information of the entire address space. Memory map checks are done for store instructions by hardware accelerators that significantly improve the performance of our system. We preserve control flow integrity by maintaining a Safe stack that stores return addresses in a protected memory region. Cross domain function calls are redirected through a software based jump table. Enhancements to the microcontroller call and return instructions use the jump table to track the current active domain. We have implemented our scheme on a VHDL model of ATMEGA103 microcontroller. Our evaluations show that embedded applications can enjoy the benefits of memory protection with minimal impact on performance and a modest increase in the area of the microcontroller.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back