Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
Time synchronization is critical to sensor networks at many layers of its design and enables better duty-cycling of the radio, accurate localization, beamforming and other collaborative signal processing. While there has been significant work in sensor network synchronization, measurement based studies have been restricted to very short-term (few minutes) datasets and have focused on obtaining accurate instantaneous synchronization. Long-term synchronization has typically been handled by periodic re-synchronization schemes with beacon intervals of a few minutes based on the assumption that long-term drift is too hard to model and predict. Thus, none of this work exploits the temporally correlated behavior of the clock drift. Yet, there are incredible energy gains to be achieved from better modeling and prediction of long-term drift that can provide bounds on longterm synchronization error across a sensor network. Better synchronization can lead to significantly lower duty-cycles of the radio, simplify signal processing and can enable an order of magnitude greater lifetime than current techniques. We measure, evaluate and analyze in-depth the long-term behavior of synchronization skew and drift on typical Mica sensor nodes and develop an efficient long-term time synchronization protocol. We use four real time data sets gathered over periods of 12-30 hours in different environmental conditions to study the interplay between three key parameters that influence long-term synchronization – synchronization rate, history of past synchronization beacons and the estimation scheme. We use this measurement-based study to design an online adaptive timesynchronization algorithm that can adapt to changing clock drift and environmental conditions while achieving applicationspecified precision with very high probability. We find that our algorithm achieves between one and two orders of magnitude improvement in energy efficiency over currently available time synchronization approaches.
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back