Toggle navigation
Home
People
Projects
Documents
Products
Courses
Login
Editing document
Tryear
Trmonth
Trnumber
Title
Abstract
<DIV ALIGN=JUSTIFY> <p>Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems. As an embedded system, a sensor node must use little energy and be robust to environmental conditions. As a generalpurpose system, a node should provide common services that make it easy to write applications. TinyOS, the current state of the art in sensor network operating systems, focuses on traditional embedded system constraints; reusable components implement common services, but a node runs a single statically-linked system image, making it hard to run multiple applications or incrementally update applications. We present SOS, a new operating system for mote-class sensor nodes that implements a more dynamic point on the design spectrum. SOS consists of dynamicallyloaded modules and a common kernel, which implements messaging, dynamic memory, and module loading and unloading, among other services. Modules are not processes: they are scheduled cooperatively and there is no memory protection. Nevertheless, the system protects against common module bugs using techniques such as typed entry points, watchdog timers, and primitive resource garbage collection. Individual modules can be added and removed with minimal system interruption. We describe SOS's design and implementation, discuss tradeoffs, and compare it with TinyOS and with the Mat'e virtual machine for TinyOS. Our evaluation shows that despite the dynamic nature of SOS and its higher-level kernel interface, it performs comparably to TinyOS in terms of energy usage and performance, and better in terms of energy usage during software updates.</p></DIV>
Filename
File
Urlpdfpaper
Urlsrcpaper
Urlpdfpresentation
Urlsrcpresentation
Urlavmedia
Urldoi
Urlpublisher
Urlgooglescholar
Urlciteseer
Pubin
Pubvol
Pubnum
Pubnum end
Pubpagefirst
Pubpagelast
Pubpagecount
Pubdate
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubdate end
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
January
February
March
April
May
June
July
August
September
October
November
December
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Pubplace
Publisher
Ispublic
Islabdocument
Miscattributes
Document category
Main research area
Show
|
Back